Anycast Discovery: Daily Mapping of Anycast

RIPE 89, PRAGUE, CZECH REPUBLIC

28 OCT - 1 NOV, 2024

Remi Hendriks

UNIVERSITY OF TWENTE.

Our Team @ DACS

Remi Hendriks PhD Candidate University of Twente Raffaele Sommese Assistant Professor University of Twente Mattijs Jonker Assistant Professor University of Twente Roland Van Rijswijk-Deij Full Professor University of Twente

Content

Content

What is anycast?

Anycast is the geographical distribution of Internet services

- Achieved by announcing a single IP address at multiple locations
- Widely used as it provides resilience, low-latency, and load distribution

What is anycast?

Cloudflare's global network https://www.cloudflare.com/en-gb/network/

Providing a daily anycast census

- Funded by **RIPE NCC Community Project Fund** (50 K€)
 - Deployment, infrastructure, and other research costs

• Establishing a measurement pipeline

- A reliable daily census of anycast
- **Publicly available** for operators and researchers

Anycast census; why?

- Anycast is one of the most effective distribution and **resilience** techniques
 - Used for critical Internet services (e.g., DNS)
 - Deployed by CDNs for low-latency, reliability, ...
 - DDoS mitigation (used to provide DDoS protection services)

Anycast census; why?

- Anycast is one of the most effective distribution and resilience techniques
 - Used for critical Internet services (e.g., DNS)
 - o Deployed by CDNs for low-latency, reliability, ..
 - DDoS mitigation (used to provide DDoS protection services)

Anycast is opaque

- Unknown if an address is anycast
- Unknown if a service is provided using anycast
- Unknown where anycast sites are located

Why do operators care?

Knowing what is, and what is not, anycast is useful for:

- Making better Traffic Engineering decisions
 - Troubleshoot network problems
 - Anycast to anycast routing problems
- **Resilience assessment** of third parties

Content

Realizing the census

- Daily measurement pipeline utilizes two methodologies
 - Anycast-based (ICMP, TCP)
 - Latency-based (ICMP, TCP, UDP/DNS)
- Anycast-based measurement uses MAnycast² approach
 - Developed in an IMC2020 submission [1]
 - Leverages the concept of using anycast to measure anycast
- Latency-based measurement based on iGreedy [2]

[1] Sommese et al. "MAnycast²: Using Anycast to Measure Anycast" ACM IMC '20

[2] Cicalese et al. "Latency-Based Anycast Geolocation: Algorithms, Software, and Data Sets," in IEEE Journal on Selected Areas in Communications '16

Anycast-based measurement Set-up

Anycast-based measurement Unicast

Anycast-based measurement Anycast

Anycast-based measurement Pros and cons

- Pros:
 - Low probing-cost (suitable for Internet scale measurement)
 - Low FN rate (rarely misclassifies anycast as unicast)
- Cons:
 - **Considerable FP rate** (falsely classifying unicast as anycast)
 - No geolocation of sites (only detection & enumeration)

Latency-based measurement (GCD)

- GCD (Great Circle Distance)
- Latency-based measurement using speed-of-light violations
- Current state-of-the-art

Latency-based measurement (GCD)

- GCD (Great Circle Distance)
- Latency-based measurement using speed-of-light violations
- Current state-of-the-art
- Pros:
 - Low FP/FN rate (highly accurate)
 - Geolocation possible
- Cons:
 - Requires large measurement platform (e.g., RIPE Atlas, CAIDA Ark)
 - High probing cost
 - (unsuitable for Internet scale)

GCD measurement **RIPE Atlas example**

https://atlas.ripe.net/measurements/79147535/

We combine the two

- Perform anycast-based census
 - Input: Internet wide hitlist

(10^6 prefixes)

- Output: set of "anycast targets" (AT) (includes TPs and FPs)
- Perform GCD-based measurement
 - Input: AT
 - (10⁴ prefixes)
 - Output: Anycast prefixes + enumeration + locations individual sites

Our hitlists

- Hitlist: a set of responsive Internet hosts
- /24 granularity for IPv4, /48 for IPv6
 - Smallest routable prefix size
- IPv4
 - USC/ISI hitlist
- IPv6
 - TUM public IPv6 hitlist
 - AAAA record addresses from OpenINTEL

Pipeline

Anycast-based measurement tool

Developed anycast measurement tool

□ More on this later ...

- Deployed using Vultr
 - 19 countries, 6 continents

Our anycast deployment (32 locations) [https://www.vultr.com/features/datacenter-locations/]

Latency-based measurement system

- GCD measurements with CAIDA's Ark [1] and Vultr VPs
 - ~ 180 vantage points
- Implemented using Scamper [2] tool
- Accurate geolocation and enumeration of 'small' anycast deployments
 - * Fails to differentiate between sites with near geographic proximity
- Geolocation and enumeration up to 60 sites for 'large' deployments

[1] https://www.caida.org/projects/ark

[2] https://www.caida.org/catalog/software/scamper/

A combined view

- Neither methodology perfect
- Census contains both anycast-based and latency-based results
 - Latency-based approach has rare cases of FNs Example: anycast in Belgium + Netherlands
 - Anycast-based approach has FPs
- Criteria up to you...
 - Filter on both -> accept some FNs
 - Filter on either -> accept some FPs

Content

- ~12.3k anycasted /24s (769 ASes)
- ~6.0k anycasted /48s (462 ASes)
- 299 ASes found to anycast both IPv4 and IPv6

AS	Organization	IPv4	IPv6
396982	Google Cloud	3,345	3
13335	Cloudflare	3,131	162
16509	Amazon	1,235	86
54113	Fastly	438	56
15169	Google	282	6
209242	Cloudflare Spectrum	234	2,836
19551	Incapsula	2	292
12041	Afilias	222	207
44273	GoDaddy	31	122

Table 6: Largest ASes originating anycast prefixes for IPv4 and IPv6.

AS	Organization	IPv4	IPv6	
396982	Google Cloud	3,345	3	
13335	Cloudflare	3,131	162	
16509	Amazon	1,235	86	T
54113	Fastly	438	56	a
15169	Google	282	6	
209242	Cloudflare Spectrum	234	2,836	
19551	Incapsula	2	292]
12041	Afilias	222	207]
44273	GoDaddy	31	122	

Top 5 IPv4 anycast ASes

Table 6: Largest ASes originating anycast prefixes for IPv4 and IPv6.

AS	Organization	IPv4	IPv6	
396982	Google Cloud	3,345	3	
13335	Cloudflare	3,131	162	
16509	Amazon	1,235	86	
54113	Fastly	438	56	Top 5 IPv6
15169	Google	282	6	anvoast ASos
209242	Cloudflare Spectrum	234	2,836	anycast ASES
19551	Incapsula	2	292	
12041	Afilias	222	207	
44273	GoDaddy	31	122	

Table 6: Largest ASes originating anycast prefixes for IPv4 and IPv6.

Figure 6: MAnycastR detection of anycast candidates for ICMPv4, TCPv4, and UDPv4.

Figure 6: MAnycastR detection of anycast candidates for ICMPv4, TCPv4, and UDPv4.

Main takeaways:

 Majority detectable using ICMP (89%)

Figure 6: MAnycastR detection of anycast candidates for ICMPv4, TCPv4, and UDPv4.

Figure 6: MAnycastR detection of anycast candidates for ICMPv4, TCPv4, and UDPv4.

Main takeaways:

- Majority detectable using ICMP (89%)
- Additional prefixes found (not detected with traditional approaches)

 2.0k UDP
 1.3k TCP

Results Enumerating deployments

Results Enumerating deployments

1/3 of anycast prefixes we detect < **40 sites**

2/3 of anycast prefixes we detect >= 40 sites

Results Enumerating deployments

1/3 of anycast prefixes we detect < 40 sites

2/3 of anycast prefixes we detect >= 40 sites

Enumeration:

- Lower bound of real deployment
- Fairly accurate for small deployments
- Indication of size for large deployments

Longitudinal observations (preliminary)

Longitudinal measurement lets us map the development of Anycast

- Daily measurement allows us to observe:
 - Anycast deployments regularly changing in size
 - Prefixes switching between unicast and anycast (on-demand anycast)
 - Cases of BGP prefix hijacking
 - Cases of temporary anycast (anti-DDoS?)
 - Anycast outages (entirely or at particular sites)

Census summary

• Created responsible, scalable, accurate anycast measurement pipeline

- A daily census of anycast
 - Detection, enumeration, and geolocation
 - Providing results from two methodologies

• We hope our census is useful to the community

Content

Anycast measurement tool

- So far, we looked at measuring anycast deployments externally
- Tool also built for measuring anycast deployments themselves
- Allows anycast operators to assess the performance of their deployment
- Example: Catchment mappings (like done with Verfploeter [1])
 - I.e., mapping for each address, the anycast site that it routes to
 - Tool can map the IPv4 space in a few minutes with ease

[1] De Vries et al. "Verfploeter: Broad and Load-Aware Anycast Mapping" ACM IMC '17

Catchment analysis Anycast RTT data

- Measurement tool can synchronously probe the hitlist from all VPs
 - o *i.e.,* each hitlist target receives a probe from all anycast sites (with 1-second intervals)
 - Technique used to perform anycast-based measurement
- Filter on sender == receiver,

for all probed IPs

- Example: filter on probe from BNA (discard all others)
- Result: RTT data (like regular unicast ping)
 for entire hitlist

Latency towards USC/ISI IPv4 hitlist

Average	65.7 ms
25%	9.8 ms
50%	23.5 ms
75%	74.1 ms

Our anycast deployment (32 locations)

- Measurement tool allows for probing hitlist from all VPs with their unicast IPs
 - $_{\odot}$ Result: RTT data from all any cast sites to the probed IP

- Filter on min(RTT_{unicast}) -> best-case unicast RTT
 - $_{\odot}$ I.e., the site that has the lowest RTT towards a target
 - $_{\odot}$ The highest achievable performance (in terms of latency) for the anycast

deployment

• min(RTT_{unicast}) mean is 39.4 ms

- min(RTT_{unicast}) mean is 39.4 ms
- RTT_{anycast} mean is 65.7 ms

- min(RTT_{unicast}) mean is 39.4 ms
- RTT_{anycast} mean is 65.7 ms
- $\Delta = RTT_{anycast} min(RTT_{unicast}) = 26.3 ms$

- min(RTT_{unicast}) mean is 39.4 ms
- RTT_{anycast} mean is 65.7 ms
- $\Delta = RTT_{anycast} min(RTT_{unicast}) = 26.3 ms$
 - $_{\odot}$ Substantial latency inflation due to sub-optimal any cast routing
 - Large gain in performance (+40%) possible using *e.g.*, BGP prepending, selective announcements, ...

- min(RTT_{unicast}) mean is 39.4 ms
- RTT_{anycast} mean is 65.7 ms
- $\Delta = RTT_{anycast} min(RTT_{unicast}) = 26.3 ms$
 - $_{\odot}$ Substantial latency inflation due to sub-optimal any cast routing
 - Large gain in performance (+40%) possible using *e.g.*, BGP prepending, selective announcements, ...
- Future work:
 - $_{\odot}$ Automated detection and solving of sub-optimal any cast routing

Measurement tool Further use cases

- Identifying load distribution (as done in the Verfploeter paper)
- Simultaneous probing with multiple prefixes
 - Side-to-side comparison of catchment mapping for two different prefixes
 - o e.g., assessing effectiveness of changed BGP announcements
 - e.g., what if site *X* were unavailable, where would its traffic go?
- IPv6, TCP, UDP/DNS and CHAOS probing
- Detect network regions experiencing 'site flipping' due to Load-Balancers
- And much more...

Content

Conclusion

- A daily census of anycast
 - Using two methodologies
 - Anycast-based approach
 - Latency-based approach
 - Publicly available

Developed measurement tool

Public release soon

Public census repo github.com/anycast-census/anycast-census

Future

- Refining/improving pipeline
 - E.g., canary outage detection
- Web-interface/API for live measurements
- User-friendly dashboard to visualize data
- Signal-based measurement
 - of short-lived anycast
 - Anti-DDoS ASes announcements
 - BGP route collector
- Longitudinal analysis of anycast

Public census repo github.com/anycast-census/anycast-census

Call for contribution

Please let us know if your prefix is covered by our

We need ground truth validation.

We are looking to collaborate

- Expand testbed infrastructure (unicast & anycast)
 - New providers/upstreams
 - More geographical coverage
 - Interested in economically developing regions
- Measurement tooling
 - Feel free to contact us

• Contact:

o remi.hendriks@utwente.nl

Public census repo github.com/anycast-census/anycast-census

Appendix slides

Site	Mean RTT (in ms)	Catchment size
de-fra	111.3	385,264
kr-icn	60.8	379,341
us-ewr	29.3	268,475
in-bom	146.1	264,222
jp-nrt	88.3	233,544
us-ord	29.3	194,599
us-mia	109.2	150,184
us-lax	51.3	146,907
br-sao	101.6	146,285
gb-lhr	33.1	140,632

Our anycast deployment (32 locations)

Site	Mean RTT (in ms)	Catchment size
de-fra	111.3	385,264
kr-icn	60.8	379,341
us-ewr	29.3	268,475
in-bom	146.1	264,222
jp-nrt	88.3	233,544
us-ord	29.3	194,599
us-mia	109.2	150,184
us-lax	51.3	146,907
br-sao	101.6	146,285
gb-lhr	33.1	140,632

Our anycast deployment (32 locations)

- Zooming in on de-fra
- Mapping target locations using ip2location
- Large number of Chinese prefixes (99k)
 Most from a few ASes

Anycast measurement tool

<pre>remi@manycast:~\$ ~/dev/stable/manycast-extended/target/debug/manycast cli -s</pre>	start -a 145.116.218.1 data/v420240813.csv 1 -o out/shuffle -u edu.nl/9qt8hdivide
[Main] Executing CLI version git-1240117	
[CLI] Connecting to Controller Server at address	
[CLI] Probes will be sent out from all clients	
[CLI] Performing ICMP/ping measurement targeting 5,651,598 addresses, with a rate of 1,000, and	an interval of 1
[CLI] Clients send probes using the following origin: source IP: 145.116.218.1, source port: 62:	321, destination port: 63853
[CLI] This measurement will be divided among clients (each client will probe a unique subset of	the addresses)
[CLI] This measurement will take an estimated 2.96 minutes	
[CLI] Measurement started at 15:18:15	
# [00:00:18] [####>] 19/177 (2m)	

Catchment mapping of 5.7 million addresses in 3 minutes (using a probing rate of 1,000 at each anycast site)

- Measurement tool allows for mapping the catchment of the IPv4 space in a few minutes with ease
 - **Catchment mapping**: the set of anycast targets that route to each anycast site
- Speed and 'ease' makes daily (or even hourly) catchment mappings trivial

Verfploeter

Methodology to perform catchment mapping

i.e., mapping the set of addresses that route to each anycast site

Verfploeter

- Methodology to perform catchment mapping *i.e., mapping the set of addresses that route to each anycast site*
- Verfploeter allows for catchment mapping at Internet scale
 - $\circ\,$ Uses responsive hosts on the Internet
 - Not restricted by deployment of e.g., RIPE Atlas
 - Allows for pro-active analysis

Verfploeter

- Methodology to perform catchment mapping *i.e., mapping the set of addresses that route to each anycast site*
- Verfploeter allows for catchment mapping at Internet scale
 - $\circ\,$ Uses responsive hosts on the Internet
 - Not restricted by deployment of e.g., RIPE Atlas
 - Allows for pro-active analysis
- Catchment mappings help operators to
 - Assess anycast performance
 - Plan infrastructure expansions

Appendix slides Daily census output snippet classification + enumeration

File: YYY/MM/DD/YYYY-MM-DD_v4.json

{"prefix": "1.0.0.0/24", "characterization":
 {"MAnycastICMPv4": {"anycast": true, "instances": 26},
 "MAnycastTCPv4": {"anycast": true, "instances": 26},
 "MAnycastUDPv4": {"anycast": null, "instances": 0},
 "iGreedyICMPv4": {"anycast": true, "instances": 60},
 "iGreedyTCPv4": {"anycast": true, "instances": 26}
 }
},

Appendix slides Daily census output snippet locations

```
File: YYY/MM/DD/YYYY-MM-DD_v4_locations.json
  "prefix": "1.0.0.0/24",
  "count": 60,
  "instances": [
    "marker": {
      "city": "Honolulu",
      "code country": "US",
      "id": "HNL",
      "latitude": 21.3187007904,
      "longitude": -157.9219970703
```

...

Appendix slides MAnycastR FNs breakdown

# of sites	Candidate	TPs	FPs	TP rate
receiving	anycast			
2	14,966	620	14,346	4.14%
3	421	347	74	82.42%
4	307	284	23	92.51%
5	400	364	36	91.00%
5-10	918	901	17	98.15%
10-15	831	825	6	99.28%
15-20	3,890	3,886	4	99.90%
20-25	2,288	2,288	0	100.00%
25-32	2,572	2,572	0	100.00%
Total	26,593	12,087	14,506	45.45%

Table 3: Anycast-based ICMPv4 TP rate per number of sites receiving replies, taking GCD_{Ark} as ground-truth.

Appendix slides MAnycastR IPv6 ATs by protocol

Figure 7: MAnycastR detection of anycast candidates for ICMPv6, TCPv6, and UDPv6.