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• The IPv6 address space is too large and sparse be scanned exhaustively.

• Internet measurements rely on collections of active IPv6 addresses called hitlists.
• Often used by Target Generation Algorithms (TGAs) to generate more addresses.
• Can they represent the IPv6 Internet or are they biased?
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Motivation
Research Questions

Client devices, web servers, Internet infrastructure are all seen as part of a homogenous set.

• Are popular hitlists biased towards certain address types? How do different address types behave?
→ We analyze the IPv6 Hitlist Service.

• How do TGAs behave with biased input?
→ We evaluate ten different TGAs.

• What are the benefits of categorizing the hitlist contents?
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The IPv6 Hitlist service

• Service was introduced by Gasser et al. in 2018. 1

• Collects more than 2.4B addresses from various sources.
• Runs addresses through filters and scans them on different ports.

• TCP/80, TCP/443, UDP/53, UDP/443, ICMP.

• Contains 21 M addresses responsive on at least one port.
• TGAs were employed by Zirngibl et al. in 2022. 2

• Generate new addresses from Hitlist addresses.
• Used to increase coverage of the IPv6 address space by 168%.

Filter

Aliased Prefix Detection

. . .

TCP/80 UDP/443 UDP/53TCP/443ICMP

Responsive Addresses

. . .

DNS Resolution

Traceroutes

Address Collection

1O. Gasser, Q. Scheitle, P. Foremski, et al., “Clusters in the Expanse: Understanding and Unbiasing IPv6 Hitlists,” in Proc. ACM Int.
Measurement Conference (IMC), Boston, MA, USA, 2018. DOI: 10.1145/3278532.3278564
2J. Zirngibl, L. Steger, P. Sattler, et al., “Rusty clusters? dusting an IPv6 research foundation,” in Proc. ACM Int. Measurement Conference

(IMC), Nice, France, 2022. DOI: 10.1145/3517745.3561440
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Analyzing the IPv6 Hitlist
Category distribution

• Device type can only be estimated.

• Analysis of origin network.
• Categorization via PeeringDB. 3

• Community-maintained database.
• Offers categorization on AS-level.
• Includes 11 categories, we chose 5.
• Remaining categories combined to Others.

• Category representation in Hitlist is not uniform.

• Most frequent categories are ISP, CDN and NSP.
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Analyzing the IPv6 Hitlist
Category Behavior

Difference in temporal stability:

• State changes denote a change in responsiveness.
• Sum of down- and uptimes since inclusion in Hitlist.
• ISP addresses have one uptime around seven days.
• CDN addresses have longer average uptimes and a

low number of downtimes.
• Should be considered in longitudinal measurements.
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Analyzing the IPv6 Hitlist
Category Behavior

Difference in port responsiveness:

• Response rate to each port probe per category.
• Categories share high response rates to ICMP probes.
• ISP addresses only have high response rates to ICMP.
• CDN addresses have the highest response rates to

TCP/80, TCP/443 and UDP/443.
• Port responses are important depending on use case.
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• CDN addresses have the highest response rates to

TCP/80, TCP/443 and UDP/443.
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Target Generation

Seed addresses Target Generation Algorithm Candidate Addresses Scanner Responsive Addresses

Full Hitlist

Categorized Hitlist

Scans

• Target Generation Algorithms (TGAs) discover patterns in known active addresses (seed data set).
• Generate new potentially active addresses (candidate data set).
• Candidates are scanned to check responsiveness.
• Some algorithms implement custom scanning to dynamically adapt generation.
• We use the full Hitlist (default input) as well as the categorized Hitlist (specific input).
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Target Generation
Target Generation Algorithms

• We choose 10 open source algorithms from
peer-reviewed publications.

• Methods include, language models, machine
learning, graph theory.

Year Authors Name Scanning Ref

2016 Foremski et al. Entropy/IP Static [3]
2019 Liu et al. 6Tree Dynamic [4]
2020 Song et al. DET Dynamic [5]
2020 Cui et al. 6GCVAE Static [6]
2021 Cui et al. 6VecLM Static [7]
2021 Cui et al. 6GAN Static [8]
2021 Hou et al. 6Hit Dynamic [9]
2022 Yang et al. 6Graph Static [10]
2022 Yang et al. 6Forest Static [11]
2023 Hou et al. 6Scan Dynamic [12]

Steger, Kuang, Zirngibl, Carle, Gasser — Target Acquired? 9



Target Generation
Input-dependent behavior

General observations:

• Size of candidates set varies greatly
• Default input leads to a bias towards ISP addresses

Category-dependent response rates:
• Percentage of generated addresses per input respon-

sive on at least one port.
• TGAs have vastly different response rates.
• Dynamic algorithms have higher response rates.
• ISP input yields more responsive addresses.
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Conclusion

• Network categories are not evenly distributed in the Hitlist service.

• Bias towards ISP addresses.
• Categories show different behavior in port responses and temporal stability.
• ISP addresses are less stable than CDN addresses.
• ISP responds only to ICMP, CDN best to TCP/80,443, UDP/443.

→ Filtering input can avoid scanning overhead.

• TGAs by default are biased towards ISP addresses.

• Default input leads to ICMP-biased responsiveness.
• Response rates vary depending on input.

→ Filtering input can avoid biased candidate addresses.

https://ipv6hitlist.github.io
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Backup
Cross-algorihm responsiveness
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Backup
Generation results

6Graph 6Scan 6VecLM . . .

cand. resp. cand. resp. cand. resp. . . .

ISP 25M 3M 8M 4M 18k 2k . . .
EDU 2M 22k 10M 38k 84k 1k . . .
Non-Profit 296k 15k 10M 946k 0 0 . . .
. . . . . . . . . . . . . . . . . . . . . . . .
Full 106M 5M 6M 2M 49k 4k . . .

• Size of candidates (cand.) varies greatly from 18 k (or zero for 6VecLM) to 106 M.
• Size of candidate set depends on algorithm as well as input.
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