Post-Quantum Transition: Standards, Effects on Protocols

RIPE89, October 29, 2024, Prague

Dmitry Belyavskiy Principal Software Engineer

Who am I

Dmitry Belyavskiy Red Hat Principal Software Engineer Maintain: OpenSSL, OpenSSH

OpenSSL Technical Committee member since 2021

Current work: Post-Quantum transition in Red Hat

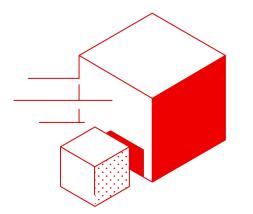
I am not

...a cryptographer ...a network engineer

2

QUBIP Consortium

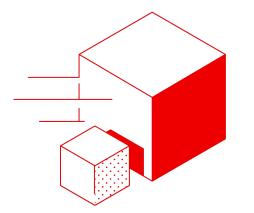
Quantum oriented update to Browsers and Infrastructure for the PQ transition, QUBIP.EU



Quantum vs Post-Quantum

5

Quantum Cryptography


Cryptography based on Quantum Mechanics

Post-Quantum Cryptography

Also: Quantum-Safe, Quantum-Resistant Cryptography resistant to Quantum Computers

Why Post Quantum transition?

Quantum Threats

Quantum Computers will break traditional cryptography Shor algorithm to break RSA, (EC)DSA, (EC)DH

Quantum computers are in future

Post-Quantum algorithms are here Timeline: circa 2030

NIST PQ contest

7

Announcement: 2016 69 participants in round 1

Chosen for standardisation: 2022 1 algorithm for Key Exchange, 3 for signature

Final standards: 2024 1 algorithm for Key Exchange, 2 for signature

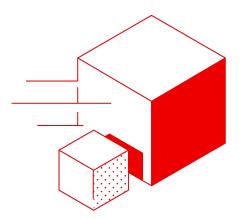
Ongoing process 4 algorithms, 1 was successfully attacked Additional Digital Signature Schemes

PQC: Standard bodies

8

Algorithms: NIST

Signature: <u>ML-DSA (ex-Dilithium)</u>, <u>SLH-DSA</u> (<u>ex-SPHINX+)</u>


Key Establishment: ML-KEM (ex-Kyber)

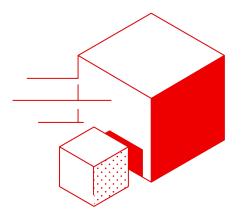
Protocols: IETF <u>Post-Quantum Use In Protocols (pquip)</u> <u>IETF Security Area</u>

Hardware OASIS group

PQ Math

Series of Red Hat blog posts

Post-quantum cryptography: An introduction

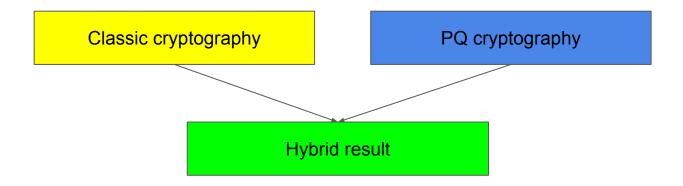

Post-quantum cryptography: Hash-based signatures

Post-quantum cryptography: Lattice-based cryptography

Post-quantum cryptography: Code-based cryptography

PQ transition challenges - I

Secure solution from insecure components

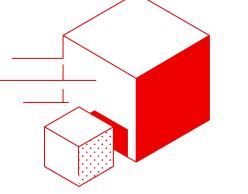

We can't trust classical algorithms We can't trust new algorithms

Temporary(?) solution

Hybrid solutions: combinations of classical and new algorithms

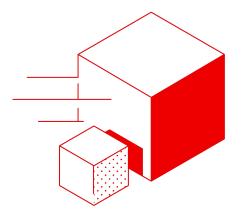
Hybrid solutions

11


PQ transition challenges - II

Size matters

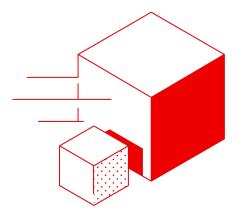
Big keys/signatures RSA-3072 (classic): 387/384 bytes ML-DSA (PQ): 1312/2420 bytes


Other issues

Performance problems Compatibility problems Network specific problems: Extra round trips UDP amplification DNSSec

DSA and KEM

DSA: digital signature algorithms

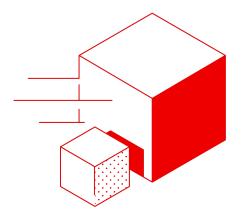

Did you connect to a proper peer? Was the email from a proper person? Is your firmware issued by a proper source?

KEM: key establishment mechanism

Symmetric keys to protect communication

DSA

Threat model

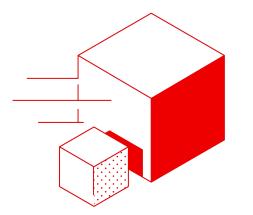

Restore private key by the public one Impersonate well-known site Extract secrets in real-time

Countermeasures: rebuild chain-of trust

New hardware (CA/Browser forum requirements) New trusted roots New end-user certificates

KEM

Threat model

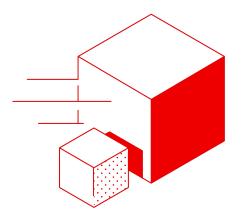

Collect data now Restore symmetric keys later Extract secrets

Countermeasures

Use new software implementing PQ algorithms

TLS now and tomorrow

Pre-standard adoption


Key establishment: Kyber-based hybrids Browsers, CDNs

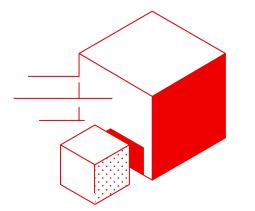
Moving to standards

Kyber => ML-KEM

Traditional problems: extra round trips

Large certificates chains

4k RSA => 22k ML-DSA

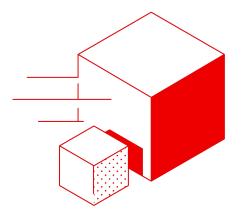

Response/request ratio limitations

QUIC: spec-level limitations 3x

DTLS: spec-level recommendation 3x, nobody implements

Traditional problems: TCP slowstart

Too small to fit certificate chain

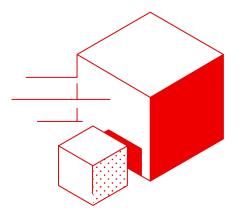

TCP initial send window: 10 Maximum Segment Size To avoid extra round-trips, 25 MSS is worth investigation

UDP based protocols

QUIC: has its own congestion control, worth investigating DTLS: doesn't have its own congestion control

DNSSec

All problems in one protocol


Small request, big response => amplification Too big RRSIGs => don't fit one packet <u>ARRF</u>: a proposal to split RRs at application level

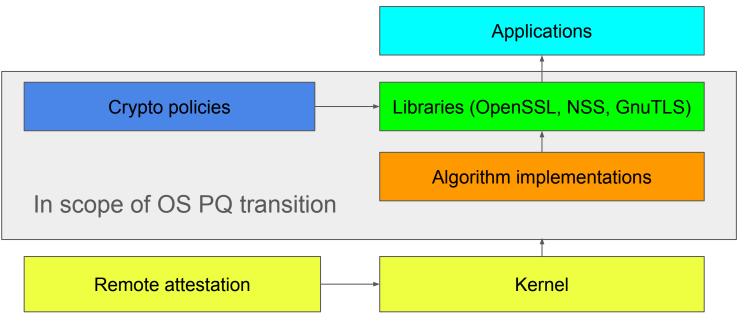
DNSSec field experiments

See presentation today later

Linux for PQ experiments

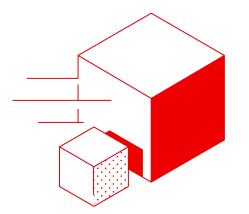
Fedora choice

<u>liboqs</u> by <u>Open Quantum Safe</u> Low-level implementations OpenSSL provider Includes post-quantum crypto policy


Container

https://github.com/QUBIP/pg-container

Upstream work OpenSSL, NSS, GnuTLS


OS PQ transition: scope

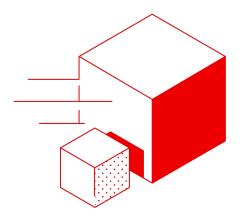
21

Which algorithm to choose

Our algorithm choice

NIST standards Kyber-based hybrids => ML-KEM based hybrids

Experimental status


We expect incompatibilities

OpenSSH

NTRU algorithm ML-KEM (9.9+)

What can you do for PQ transition

Networks

Test your systems

Applications

Identify hard-coded limitations Raise issues upstream

Protocols

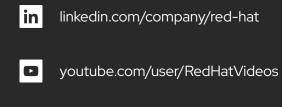
Participate in IETF working groups RPKI?

Useful links

Post-Quantum Cryptography for Engineers

Vision Paper: Do we need to change some things?

Research Agenda for a Post-Quantum DNSSEC


Field Experiments on Post-Quantum DNSSEC

Thank you

Red Hat is the world's leading provider of enterprise open source software solutions. Award-winning support, training, and consulting services make

Red Hat a trusted adviser to the Fortune 500.

facebook.com/redhatinc

twitter.com/RedHat

